

SYNTEC

SIZEB_2KWX3+11KW four-in-one driver control hardware operating instructions

Servo Products

Table of Contents

1.	Hoı	mePage	3
2.	Pre	face	4
3.	App	plicable models	4
4.	Hai	rdware specification	5
4	4.1.	Description	5
4	4.2.	Appearance introduction	5
4	4.3.	Dimensions	7
4	4.4.	Drive specification	7
5.	Hai	ndling and installation	9
!	5.1.	Transport	9
!	5.2.	Installation Environment Conditions and Precautions	9
6.	Wiı	ring and signal	10
(6.1.	Peripheral device wiring diagram	10
(6.2.	Drive connector and terminal description	12
(6.3.	Serial vector wiring diagram	13
(6.4.	Syntec encoder external analog temperature wiring diagram	13
(6.5.	Interface pin definition	15
(6.6.	Multiple four-in-one series description	17
(6.7.	Regeneration resistor selection	20
	6.7	.1. Overview of Regenerative Resistor Selection	20
	6.7	.2. Detailed Selection Guide for Regeneration Resistors	21
(6.8.	KTY84 temperature sensor and over temperature protection	29
	6.8	.1. Installation	29
	6.8	.2. Drive Parameters Setting	29
(6.9.	Y connection and Delta motor parameters conversion and use precautions	33
	6.9		
	6.9	_	
	6.9	.3. Motor Testing after Conversion	38

1. HomePage

SYNTEC

Servo Drive Operation Manual

2. Preface

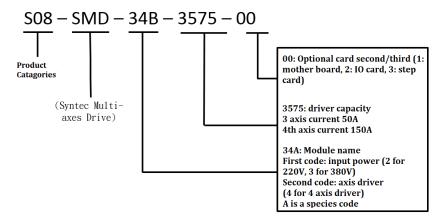
Thank you for your continued support of our products. Our servo team is forever committed to the research and development of new products; we hope that our products and services can bring each user the best possible experience.

The SYNTEC high-performance servo drive series consists of our company's latest servo drive models. Each product is manufactured using high quality materials and has been through rigorous testing. In addition, our drives adopt precise vector control, guaranteeing high accuracy, high stability and high efficiency.

This Operation Manual includes the drive's hardware specifications, installation instructions, as well as wiring and signal descriptions, providing each user with detailed guidance. To achieve the best performance of our products and to maintain the safety of both personnel and equipment, please read this manual carefully before use and keep it in a safe place for future reference. If any doubts arise, please do not hesitate to contact our officewe will be happy to help!

3. Applicable models

This single-axis operation manual is suitable for the new generation 2KWX3 + 11KW drive integrated machine.



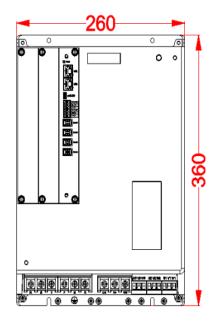
4. Hardware specification

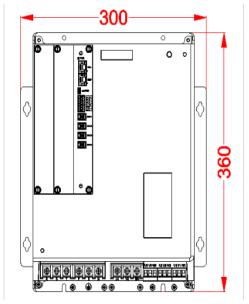
4.1. Description

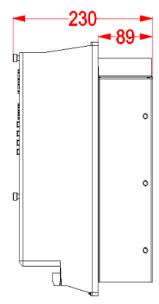
Each drive undergoes strict quality inspection and anti-collision packaging before leaving the factory. Please check for impact damage upon receiving the product. Users should also compare the serial numbers on the outer box and on the product itself. If there is any discrepancy, please contact us immediately.

Model Description

4.2. Appearance introduction


S08-SMD-34B-3575-00


Item	Module	Description	
A	External Power	Connects to 380 V 3-phase AC (RST)	
В	Motor Power Supply	Connects to the motor to supply motor power (UVW) Fours groups total: Axis1~Axis4 from right to left	
С	Braking Resistor	Braking resistor port (connect to P and B)	
D	MIII Serial Communication Port	Connects to host controller (MIII signal)	
E	Mini USB Port	Connects to PC	
F	I/O Signal Port	Connects to I/O equipment (emergency stop, warning lightetc.)	
G	Encoder Feedback	Port 1~Port 4 from top to bottom; connects to Axis1~Axis4 motor encoders	



4.3. Dimensions

S08-SMD-34A-3575-22

4.4. Drive specification

Syntec Drive		S08-SMD-34B-3575-xx
Power	Rated Voltage	3-phase 380~440 V 50/60 Hz
	Voltage Error Bound	-15 ~ +10%
	Frequency Error Bound	±5%
Output	Rated Current	Axis1~Axis3: 8.4 A, Axis4: 27 A
	Over-current	150% 60s, 200% 1s
Control Method		3-phase full wave rectification, SVPWM —VVVF control
Regenerator		Internal; external available For external, refer to the Regenerator Selection section
Encoder		Supported interfaces: Tamagawa, SYNNET, NIKON, FeeDAT

		Extended encoder modules: Supports Tamagawa, SYNNET, NIKON, ABZ, Serial, SSI, BiSS (Does NOT support UVW wire-saving encoders) (For more about extended encoder modules, refer to Servo 10PX1/10PX3 Extended Module Operation Manual)
PC Interface		USB
Controller Serial Communicatio n		Mechatrolink III
I/O Signal	Digital Input	4 ports, function alterable
	Digital Output	2 ports, function alterable
Cooling Method		Fan cooling
Environment	Temperature	$0^{\circ}\text{C} \sim 55^{\circ}\text{C}$ (If the surrounding temperature exceeds 45°C, implement forced air circulation), storage: -20 \sim 65°C (non-freezing)
	Humidity	Maximum 90% RH (non-condensing), storage: under 90%RH (non- condensing)
	Location	Indoors (avoid direct sunlight); keep away from oil, dust, and corrosive or flammable gases
	Altitude	Below 1000 m until sea level
	Vibration	Maximum 5.9 m/s ²
Weight		9.5 kg

5. Handling and installation

5.1. Transport

The entire body of the drive must be held during transportation. To avoid the risk of falling, do NOT hold the drive by its upper cover or by any individual part.

5.2. Installation Environment Conditions and Precautions Installation Environment Conditions

- Locations without high heat generating devices.
- Locations without floating dust or metal particles.
- Locations without corrosive or flammable gasses and liquids.
- · Locations without water, steam, dust, or oily dust.
- Locations without electromagnetic noise interference.
- A sturdy, vibration-free location.
- Suitable ambient temperature is $0 \,^{\circ}$ C $\sim 55 \,^{\circ}$ C; if the ambient temperature is above $45 \,^{\circ}$ C, please put the drive in a well-ventilated place or in an air-conditioned room.

Installation Precautions

- Install the drive in the direction specified by the instructions; incorrect positioning may lead to servo failure.
- When installing the drive, do not block its ventilation holes and do not place it upside down, otherwise the drive may malfunction.
- Do not use on or near flammable materials.
- Make sure that each fastening point is tight when fixing the drive in place.
- Install on a surface that can withstand the weight.

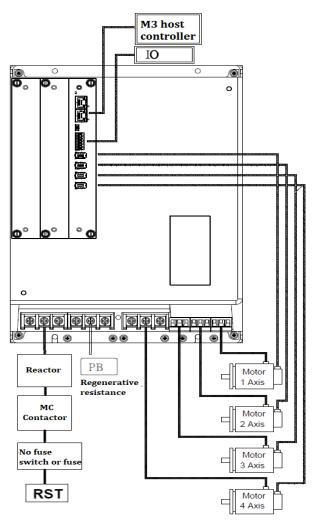
Operation Precautions

- For long-term operation, it is recommended to maintain an ambient temperature below 45 °C to ensure product reliability.
- If the product is installed in an electrical cabinet, the size and ventilation of
 the cabinet must prevent any internal electronic devices from overheating. Also pay
 attention to whether the machine's vibrations will affect other electronics in
 the cabinet.
- To enhance cooling circulation, maintain sufficient space between all sides and surrounding objects of the drive and the baffles (walls); also take care not to block the ventilation holes, otherwise the drive may malfunction.

Other Precautions

- The cable between the drive and the motor should not be stretched too tightly.
- Do not place heavy objects on top of the drive.

- Keep the drive clear from conductive objects such as metal and screws or combustibles such as oil.
- If the cable connecting the motor and the drive is longer than 20 meters, please thicken the U, V, W and encoder cables.
- Do not drop or impact the drive.
- Do not force the drive to operate if it is damaged.


6. Wiring and signal

6.1. Peripheral device wiring diagram

S08-SMD-33B-35100

- **Recommended encoder wiring: 22AWG×2C+24AWG×2P At least 90% coverage
- **%** Recommended RST wiring: 6AWG or 13.3mm2
- **Recommended UVW wiring: Axial: 14AWG or 2.0mm2

Spindles of 7.5kw or below: 12AWG or 3.3mm2 Spindles of 11kw or above: 10AWG or 5.3mm2

Installation Precautions:

- Before powering on, check if the U, V, W, and G terminals are correctly wired to the
 motor. An incorrect UVW sequence may lead to rotation in the reverse direction or
 even motor malfunction; at that point, Encoder Testing and Magnetic Pole Offset
 Detection must be re-performed. An incorrect G wiring may cause damage to the
 motor or the drive.
- It is recommended to provide the power supply of the controller through any two terminals of the RST.
- When wiring the host controller, select either general servo signal or serial servo signal-- not both.

Wiring Instructions

Power supply:

- 1. Input power from R, S, T, L1, L2
- 2. L1 and L2 are optional

• Encoder Terminals:

- 1. Single-axis Axial Type (SVD) has one set of encoder feedback (6PIN) and Spindle Type (SPD) has two sets of encoder feedback (6PIN); each set of encoder terminals has a 5V power output (up to 150mA).
- 2. Supports encoder interface of Tamagawa, SYNTEC, and NIKON.
- 3. Supports expansion modules that connect other encoder interfaces (refer to Servo 10PX1/10PX3 Expansion Module Guide).
- 4. Battery voltage checking for absolute encoders.

Host Controller Serial Communication:

- 1. Mechatrolink-II Serial 10Mbps
- 2. Mechatrolink-III Serial 100Mbp
- 3. EtherCAT Serial 100Mbps (Currently unsupported)

General IO Signal:

- 1. 2 DI ports
- 2. 1 DO port
- 3. Absolute Battery Voltage Input
- 4. Note

NC: Empty port

I port: Input a voltage of 24V relative to COM port: 00+ and 00- are internally conductive

• STO I/O:

2 Safety inputs (STO-A, STO-B)

1 Safety feedback (STO-FB)

• USB Communication:

Connects to PC to set the servo's internal parameters and monitor the operation status.

• LED:

Operation Status and Power indicator.

6.2. Drive connector and terminal description

Name	Terminal	Description
Main Loop Power Input Terminal	R, S, T	Connects to 3-phase AC
Motor Power Input Terminal	U, V, W	Connects to motor
Regenerator Terminal	Р, В	Connects to external regenerative resistor through P and B terminals
DC BUS	P, N	P is Positive, N is Negative
Serial Communication Interface	M3A, M3B	Connects to host controller
USB Port	mini USB	Connects to PC's USB port
Encoder Feedback (Axis1)	ENC1	Connects to Axis1 motor encoder
Encoder Feedback (Axis2)	ENC2	Connects to Axis2 motor encoder
Encoder Feedback (Axis3)	ENC3	Connects to Axis3 motor encoder
Encoder Feedback (Axis4)	ENC4	Connects to Axis4 motor encoder
Ground Terminal		Connects to ground

Wiring Precautions:

Keep the six power lines R, S, T and U, V, W away from other signal lines, at least a 30 cm distance if possible.

When the power is cut off, the drive's internal capacitor still contains a large amount of charge-- do NOT touch the six power lines R, S, T, and U, V, W. Please wait until the charging light goes out.

When lengthening the encoder cable, apply twisted pair cabling to the encoder cable and the grounding signal cable. Do not exceed a length of 20 m (65.62 in or 14 ft); if it is absolutely necessary to do so, please use a signal line with twice the wire diameter in order to minimize signal attenuation.

Please wire according to relevant regulations. Select the wire diameter according to motor wattage, as follows:

Туре	Wattage	Wire Diameter	
Axial	100W~850W	20AWG	
	850W~7.5kW	16AWG	
Spindle	7.5kW and below	12AWG	
	11kW and above	10AWG	

6.3. Serial vector wiring diagram

Follow these steps for wiring a serial host controller:

- Connect the AC Power to the drive's R, S, T, and ground wire.
- Connect Mechatrolink III to the host controller, typically from the host M3 port to M3A, and if necessary, connect to the next station through M3B.
- Connect the motor to the U, V, W terminals of its corresponding axis.
- Connect the motor encoder to the encoder feedback port of its corresponding axis.

6.4. Syntec encoder external analog temperature wiring diagram

Distinguishing among the PTC130 temperature sensor, the normally closed (NC) contact, and the KTY84 temperature sensor:

- On the label of PTC130 temperature sensor signal line, "PTC130" is labelled right underneath "Thermal Protection."
- On the label of normally closed (NC) contact temperature sensor signal line, "(NC)" is labelled right underneath "Thermal Protection," as in Figure 1.
- On the label of KTY84 temperature sensor signal line, "KTY84" is labelled right underneath "Thermal Protection," as in Figure 2. In addition, the KTY84 motor has a "KTY84" label attached to the motor casing, as in Figure 3.

Figure 1 (Figure 1)

Figure 2 (Figure 2)

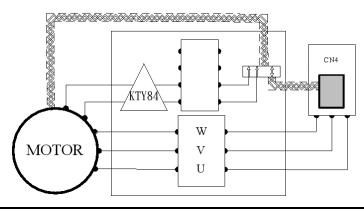


Figure 3 (Figure 3)

Analog Temperature Sensor Wiring Diagram (using encoder header K22)

- Connect the motor's temperature sensor terminal to the SYNTEC encoder's temperature sensor terminal
- Set the parameters Pn-743 and Pn-744 (If the SYNTEC encoder is connected to the 2nd feedback, then set the parameters Pn-747 and Pn-748 instead).

cymos come governous

6.5. Interface pin definition

M3 Serial Servo /EtherCAT Serial							
	NAMES IN						
Pin	Name		Description Description				
1	TX+		Differential Signal (+)				
2	TX-		Differential signal (-)				
3	RX+		Differential Signal (+)				
4	NC						
5	NC						
6	RX-		Differential signal (-)				
7	NC						
8	NC						
	М	ini USB commun	ication Mini USB Port				
1		5V	5V power supply				
2	2 DM		USB differential signal (-)				
3	3 DP		USB Differential Signal (+)				
4	4 GND		Power Reference GND				
5	5 GND		Power Reference GND				

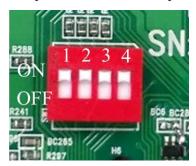
Station Number

0	N/A	4	Station No. 4	8	Station No. 8	С	Station No. 12
1	Station No. 1	5	Station No. 5	9	Station No. 9	D	Station No. 13
2	Station No. 2	6	Station No. 6	A	Station No. 10	E	Station No. 14
3	Station No. 3	7	Station No. 7	В	Station No. 11	F	Station No. 15

Encoder Feedback

1	5V	2	GND
3	BAT+	4	BAT-
5	D+	6	D-

IO interface signal IO Signal Port							
	1						
1	1 C01 2 O0+						
3	IO	4	00-				
5	I1	6	BAT+				
7	NC	8	BAT-				



6.6. Multiple four-in-one series description

The drives of the Multi-axis Servo Drive series has a multi-drive serial function, activated by using an M3 cable to connect the M3B port of one drive to the M3A port of a second drive. The user can then control this function using the panel DIP switch and controller parameters, as follows:

DIP Switch Guide

The physical diagram of the dip switch on the pre-level version is shown below. The panel DIP switch is pictured below:

The DIP switch has four PINs, where each PIN has the two states ON and OFF. The switch can therefore represent 16 distinct station numbers, as shown in the table below. Be especially aware of the relationship between station numbers and controller parameters.

PIN 1	PIN 2	PIN 3	PIN 4	Station No.
ON	ON	ON	ON	1
OFF	ON	ON	ON	2
ON	OFF	ON	ON	3
OFF	OFF	ON	ON	4
ON	ON	OFF	ON	5
OFF	ON	OFF	ON	6
ON	OFF	OFF	ON	7
OFF	OFF	OFF	ON	8
ON	ON	ON	OFF	9
OFF	ON	ON	OFF	10

PIN 1	PIN 2	PIN 3	PIN 4	Station No.
ON	OFF	ON	OFF	11
OFF	OFF	ON	OFF	12
ON	ON	OFF	OFF	13
OFF	ON	OFF	OFF	14
ON	OFF	OFF	OFF	15
OFF	OFF	OFF	OFF	16

Controller Axis Number Encryption Principles

The user should adjust controller parameters Pr21~24 and Pr3261~3262 according to the DIP switch station number. Encryption principles are explained below.

The controller's corresponding axis number should be set in the form MMnn: MM denotes the main station number, or the DIP switch's corresponding station number, which can be obtained from the table in the last section above or from Pn-031 of the tuning software; nn denotes the substation number, which has a range of $0\sim6$, where $0\sim3$ represent Axis $1\sim$ Axis4, 4 represents laser function, and $5\sim6$ represent IO expansion cards $1\sim2$, respectively.

If the station number is 1, set controller parameters as follows:

Parameter	Value	Description
Pr21	1000	Motion control port number corresponding to axis
Pr22	1001	Motion control port number corresponding to axis
Pr23	1002	Motion control port number corresponding to axis
Pr24	1003	Motion control port number corresponding to axis
Pr3261	1005	Drive station number corresponding to M3 IO 1st station

Pr3262	1006	Drive station number corresponding to M3 IO 2nd station	
--------	------	---	--

If the station number is 2, Pr21 is changed to 2000, Pr22 is changed to 2001, and other Pr23, Pr24 and other parameters are deduced by analogy; if the station number is 10, Pr21 needs to be changed to 10000, and Pr22 needs to be changed to 10001. Other parameters such as Pr23 and Pr24 are the same; if the number is 11, the Pr21 needs to be changed to 11000, the Pr22 to 11001, and the other Pr23, Pr24 and so on.

It should be noted that the controller must provide M3 serial communication to use the serial function, so Pr9 must be set to 103, and consider the compatibility of future automatic detection. The digital settings of parameters Pr3261 and Pr3262 should be arranged from small to large. .

If the station number is 2, set Pr21 as 2000, Pr22 as 2001, and so on; if the station number is 10, set Pr21 as 10000, Pr22 as 10001, and so on; if the station number is 11, set Pr21 as 11000, Pr22 as 110001, and so on.

Note that this serial function is available only if the controller is using M3 serial communication, therefore Pr9 should be set as 103. In addition, considering the function's future compatibility with auto detection, the user should set the values of Pr3261~Pr3262 in order of least to greatest.

6.7. Regeneration resistor selection

6.7.1. Overview of Regenerative Resistor Selection

Internal regenerative resistors are recommended. If special needs arise, compute values according to the following table (see *Detailed Selection Guide of Regeneration Resistors*):

Drive Model No.	Internal Regenerator		Recommended Capacitance (Note 1)	Recommended Resistance (Minimum Value, Refer to Note 2)
	Capacitance (W)	Resistance (Ω)		
S08-SMD- 33A-2550- 22	None	None	2500 W	20 Ω

Note:

The Recommended Regeneration Resistance Table is designed for general machining situations. If these values do no meet the actual application conditions, users can refer to the Detailed Selection Guide for Regenerative Resistors and select a regenerator of higher power.

Recommended resistance = operating voltage / maximum brake current, and it is the minimum regenerative resistance of the drive. If no suitable resistance value is found, users must select a regenerator of hig

There are three types of regenerative resistors commonly used in CNC machining: wirewound resistors, ripple resistors, and aluminum-housed resistors; users can select the type according to their needs. The following chart compares the three types of brake resistors:

Resistor Type	Wirewound	Ripple	Alumium-Housed
Characteristics	8	- d mmmm <u>rd</u> -	
Heat Dissipation	Poor	Average	Excellent
Operating Power Range	Large (30~20000W)	Large (30~20000W)	Small (40~2000W)
Operating Resistance Range	2~1000Ω	2~1000Ω	0.1~10ΚΩ
Cost	Low	Average	High
Dimensions Length X Width X Height (Unit: mm)	Large (362 x 70 x 138)	Large (362 x 70 x 138)	Small (335 x 76 x 44)

6.7.2. Detailed Selection Guide for Regeneration Resistors

Motors generally do positive work while operating, but they may do negative work when the output torque direction is opposite of the rotation direction. For instance, the motor may output torque to resist the inertia during braking, or it may experience an external torque load while in torque mode...etc. During those times, the external force is doing positive work through the motor and transferring that energy to the drive; that is, the motor acts as a generator. When this happens, the regenerative resistor must quickly dissipate the energy in order to prevent flooding the DC terminal voltage.

Suppose the external torque load is TL and the unit is a percentage of the rated torque (%). The speed at that instance in time is Wr (rpm). The regenerative resistance power must be greater than the External Torque Power = TL x Rated Torque x (Wr x $2\pi/60$).

For example, if the external torque is 50% of rated torque, the speed is 2000 (rpm), and the motor rated torque is 2 (Nm), then the external torque produces a

power of 0.5 * 2 * 2000 * 2π / $60 \approx 210$ W. To be safe, that number is usually multiplied by a safety factor of around 2 \sim 3, therefore the user needs to select a regenerative resistor of more than 420W.

Free of External Torque Load

Assuming that the motor moves back and forth, the energy generated by the inertial force during braking will be poured back into the drive. At this time, the capacitor of the DC bus terminal of the drive is the first buffer to absorb and reuse the energy. However, the absorption of energy by the capacitor causes the DC bus voltage to rise, so when the voltage rises to a certain level, the second buffered regenerative resistor is turned on to convert the energy into heat and discharge it.

The calculation method of the regenerative energy generated by the spindle motor of the drive during braking is provided below, and the user can calculate the required resistance according to different occasions.

E0 in the table below is the regenerative energy required to dissipate from the rated speed to the standstill when the motor is load-free, E0 = $J^*\omega r^2/182$, where J is the rotor inertia (kg-m2) and ωr is the rated speed of the motor (Rpm). And Ec is the energy that the DC bus capacitor can absorb, Ec = $C^*(Vb,max^2-Vb^2)/2$, where C is the capacitance value of the DC bus terminal. Vb,max is the maximum voltage that the DC bus can withstand, the 220V drive can withstand 400 V, and the 380V drive can withstand 800 V. The Vb value is the rated voltage of the DC bus, and the value is 2 times the root of the input supply voltage.

Considering the actual application, assume that the load inertia ratio is N times the motor inertia. If the speed is braked from the rated M times to zero speed, the regenerative resistor must consume E0(N+1)*M2-Ec Joule. If the motor reciprocating cycle (Time of accelerating, being steady, to decelerating) is T sec, then the regenerative resistor power W = 1.2[E0*(N+1)*M2-Ec]/T, 1.2 is the safety factor.

In addition, according to the application of the spindle cover, the allowable frequency index is provided for the user to select. The allowable frequency is defined as the continuous acceleration and deceleration of the motor. In the case where the regenerative resistor and the motor are not overheated, the maximum number of round trips per minute is equal to 60 seconds divided by the round trip period T, i.e. 60/T. For example, when the milling machine is performing drilling and tapping, the spindle will frequently perform acceleration and deceleration (single drilling involves two acceleration and deceleration actions). If it is desired that the regenerative resistor is not prone to overheating and smoke, the number of drilling per minute must be limited to less than half of the allowable frequency.

380V OpenDrive — Axial Motor

Drive Model No.	Axial Motor Model No.	Rotor Inertia J (10 ⁻ ⁴ kg- m ²)	Rotor Inertia (rpm)	Load-free Rated Speed to Zero Speed Regenerative Energy Eo (joule)	Capacitor Absorbed Energy Ec (joule)
S08-SMD- 34B-3575- xx	S08-AM8-40- E12-F	20.6	2000	45.27	878
	S08-AM11- 40-E12-F	26.3	2000	57.8	878
	S08-AM6-40- E12-M	14.9	2000	32.75	878
	S08-AM10- 40-E12-M	25.7	2000	56.48	878

380 V OpenDrive — Milling Spindle Motor

Drive Model No.	Milling Motor Model No.	Rotor Inertia J (10 ⁻ ⁴ kg- m ²)	Rotor Inertia (rpm)	Load-free Rated Speed to Zero Speed Regenerative Energy Eo (joule)	Capacitor Absorbed Energy Ec (joule)
S08-SMD- 34B-3575	S08-SP-L5.5- 12	43.5	3000	215.11	878
	S08-SP-L5.5- 18	40.6	3000	200.77	878
	S08-SP-L5.5- 24	30.7	3000	151.81	878
	S08-SP-M5.5- 12	58.3	1500	72.07	878
	S08-SP-M7.5- 10	204.5	1500	252.82	878

380 V OpenDrive — Lathing Spindle Motor

Drive Model No.	Lathing Motor Model No.	Rotor Inertia J (10 ⁻ ⁴ kg- m ²)	Rotor Inertia (rpm)	Load-free Rated Speed to Zero Speed Regenerative Energy Eo (joule)	Capacitor Absorbed Energy Ec (joule)
S08-SMD- 34B-3575	S08-SP-M5.5- 08A	100	2000	219.78	878
	S08-SP-M7.5- 08A	123	2000	270.33	878
	S08-SP-M11- 08A	206	2000	452.75	878
	S08-SP-M15- 08A	220	2000	483.52	878

 $\begin{tabular}{ll} \textbf{Milling Spindle Package} \\ \textbf{(The following tables are all computed using a 100\% load inertia ratio; bolded numbers denote the recommended power.)} \end{tabular}$

S08-SP-L5.5-12

Resistor Power Operating Speed	Allowable Frequency (times/min)				
	500 W	800 W	1 kW	2 kW	
2 Times the Rated Speed	25	39	49	98	
3 Times the Rated Speed	8	13	16	32	
4 Times the Rated Speed	4	6	8	16	
5 Times the Rated Speed	2	4	5	9	
6 Times the Rated Speed	2	3	3	7	

S08-SP-L5.5-18

Resistor Power Operating Speed	Allowable Frequency (times/min)				
	500 W	800 W	1 kW	2 kW	
2 Times the Rated Speed	28	44	55	111	
3 Times the Rated Speed	9	14	17	34	
4 Times the Rated Speed	4	7	9	17	
5 Times the Rated Speed	3	4	5	10	
6 Times the Rated Speed	2	3	4	7	

S08-SP-L5.5-24

Resistor Power Operating Speed	Allowable Frequency (times/min)				
	500 W	800 W	1 kW	2 kW	
2 Times the Rated Speed	49	78	98	195	
3 Times the Rated Speed	12	20	25	49	
4 Times the Rated Speed	6	10	12	24	
5 Times the Rated Speed	3	5	7	13	
6 Times the Rated Speed	2	4	5	10	
7 Times the Rated Speed	2	3	4	7	
8 Times the Rated Speed	1	2	3	5	

S08-SP-M5.5-12

Resistor Power Operating Speed	Allowable Frequency (times/min)				
	500 W	800 W	1 kW	2 kW	
3 Times the Rated Speed	82	131	163	327	
4 Times the Rated Speed	19	30	38	76	
5 Times the Rated Speed	7	12	15	29	
6 Times the Rated Speed	6	10	12	24	
7 Times the Rated Speed	4	7	8	16	
8 Times the Rated Speed	3	5	6	12	

S08-SP-M7.5-10

Resistor Power Operating Speed	Allowable Frequency (times/min)				
	500 W	800 W	1 kW	2 kW	
2 Times the Rated Speed	19	30	38	76	
3 Times the Rated Speed	6	10	13	26	
4 Times the Rated Speed	3	5	7	14	
5 Times the Rated Speed	2	3	4	8	

Lathing Spindle Package

S08-SP-M5.5-08A

Resistor Power Inertia Ratio (N)	Allowable Frequency of the Motor's External Regenerator under 2 Times the Rated Speed (times/min)			
	600 W	800 W	1 kW	2 kW
5 Times the Inertia Ratio	26	35	44	87
6 Times the Inertia Ratio	22	29	37	73
7 Times the Inertia Ratio	19	25	32	63
8 Times the Inertia Ratio	17	22	28	55
10 Times the Inertia Ratio	13	18	22	45
12 Times the Inertia Ratio	11	15	19	37

S08-SP-M7.5-08A

Resistor Power Inertia Ratio (N)	Allowable Frequency of the Motor's External Regenerator under 2 Times the Rated Speed (times/min)			
	600 W	800 W	1 kW	2 kW
5 Times the Inertia Ratio	21	28	35	69
6 Times the Inertia Ratio	17	23	29	58
7 Times the Inertia Ratio	15	20	25	50
8 Times the Inertia Ratio	13	18	22	44
10 Times the Inertia Ratio	11	14	18	36
12 Times the Inertia Ratio	9	12	15	30

S08-SP-M11-08A

Resistor Power Inertia Ratio (N)	Allowable Frequency of the Motor's External Regenerator under 2 Times the Rated Speed (times/min)			
	600 W 800 W 1 kW 2 kW			
5 Times the Inertia Ratio	12	16	20	39
6 Times the Inertia Ratio	10	13	17	33
7 Times the Inertia Ratio	9	12	15	29
8 Times the Inertia Ratio	8	10	13	26
10 Times the Inertia Ratio	6	8	10	21
12 Times the Inertia Ratio	5	7	9	18

S08-SP-M15-08A

Resistor Power Inertia Ratio (N)	Allowable Frequency of the Motor's External Regenerator under 2 Times the Rated Speed (times/min)			
	600 W	800 W	1 kW	2 kW
5 Times the Inertia Ratio	11	15	18	37
6 Times the Inertia Ratio	9	12	16	31
7 Times the Inertia Ratio	8	11	14	27
8 Times the Inertia Ratio	7	10	12	24
10 Times the Inertia Ratio	6	8	10	19
12 Times the Inertia Ratio	5	7	8	16

6.8. KTY84 temperature sensor and over temperature protection

This section details the installation and setup of the KTY84 temperature sensor with its driver and encoder and its overtemperature protection.

The KTY84 thermistor is an analog type temperature sensing element whose resistance value changes with temperature.

The KTY84 temperature sensor can be installed on drives and encoders. This section details how to activate the sensor and its thermal protection function.

The KTY84 thermistor is an analog type temperature sensing element; its resistance value changes with temperature.

6.8.1. Installation

The KTY84 temperature sensor of the driver has two signal lines, and the wiring diagram is detailed in the section [Wiring and Signal].

A KTY84 temperature sensor installed on a drive has two signal lines; refer to the Wiring and Signals section for wiring diagrams.

6.8.2. Drive Parameters Setting

Parameter number	parameter name	Predetermined area	Preset
Pn-740	Turn on the drive KTY84 over temperature protection function	0~1	1
Pn-741	Drive KTY84 over temperature protection level	80~150 (°C)	120
Pn-742	The first feedback of the new generation of encoder internal KTY84 over temperature protection level	0~145 (°C)	0
Pn-743	The first feedback of the new generation of encoder external KTY84 over temperature protection level	0~145 (°C)	0
Pn-744	The first feedback of the new generation of encoder external two KTY84 over temperature protection level	0~145 (°C)	0

Parameter number	parameter name	Predetermined area	Preset
Pn-746	The second feedback of the new generation of encoder internal KTY84 over temperature protection level	0~145 (°C)	0
Pn-747	The second feedback of the new generation of encoder external KTY84 over temperature protection level	0~145 (°C)	0
Pn-748	The second feedback of the new generation of encoder external two KTY84 over temperature protection level	0~145 (°C)	0
Pn-74A	Turn off the internal encoder KTY84 over temperature protection	0~1	0
Pn-74B	Turn off the first encoder external KTY84 over temperature protection	0~1	0
Pn-74C	Close the first encoder external two KTY84 over temperature protection	0~1	0
Pn-74E	Turn off the internal encoder KTY84 over temperature protection of the second encoder	0~1	0
Pn-74F	Turn off the second encoder external KTY84 over temperature protection	0~1	0
Pn-750	Turn off the second encoder external two KTY84 over temperature protection	0~1	0

Above is the table of parameters relevant to the KTY84 thermal protection function. Set Pn-740 as 1 to enable the function, then the system will trigger the overheat alarm AL-200 if the measured temperature exceeds the level set in Pn-741.

To enable thermal protection for Syntec encoders, simply set the thermal protection level to a value within the range $0\sim145$ °C. If this level is already factory-set, it cannot be modified.

There are two ways to disable the thermal protection function, as follows:

For drives before V2.1.8, set the thermal protection level to 0.

For V2.1.8 and onward, use the parameter "Disable Encoder Int. Thermal Protection".

Example: Set Pn-742 "Encoder Int. KTY84 Protection Lv." as 140°C. To disable the protection, set Pn-74A "Disable Encoder Int. Thermal Protection" as 1.

If the temperature exceeds the protection level, a corresponding overheat alarm will be triggered as follows:

Alarm Code	Alarm Name
Alarm 220	Motor Over Temperature
Alarm 320	Encoder Internal Over Temperature
Alarm 321	Encoder External(1) KTY84 Over Temperature
Alarm 322	Encoder External(2) KTY84 Over Temperature
Alarm 324	2nd Encoder Internal Over Temperature
Alarm 325	2nd Encoder External(1) KTY84 Over Temperature
Alarm 326	2nd Encoder External(2) KTY84 Over Temperature

For diagnosis and troubleshooting of overheat alarms, refer to the table below:

possible reason	an examination	Processing method
Motor cooling system is abnormal	Check motor cooling system	Replace the cooling system.
Analogous temperature sensing signal is abnormal	Check if the analog temperature feedback is normal	 Check if the wiring is loose or abnormal. Check the parameters Pn7-40 and Pn7-41 for correct settings.
Motor rated current setting is incorrect	Check rated current parameters	Confirm the input parameters. If there is a correction, you need to readjust the machine.
The acceleration and deceleration time is too short	Check the acceleration speed parameters	Acceleration and deceleration time increases.

possible reason	an examination	Processing method
Excessive load	Check if the load rate continues to exceed 100%	Replace the motor with a larger power.

The user can observe the KTY84 sensing temperature of the motor through the state monitoring variable Pn-D60; Pn-D61 observes the KTY84 sensing temperature of the first feedback new generation encoder; Pn-D62 and Pn-D63 observe the first feedback new Generation encoder external and external two KTY84 sensing temperature; Pn-D65 second feedback new generation encoder internal KTY84 sensing temperature; Pn-D66 and Pn-D67 observation second feedback new generation encoder external one The external two KTY84 senses the temperature as shown in the table below.

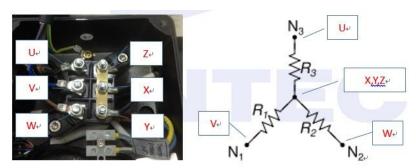
Users can observe the temperatures measured by KTY84 through status monitoring variables.

These variables correspond to the measured temperatures as follows:

Status Monitoring Variables	Parameter Descriptions
Pn-D60	Measured Temperature via KTY84 with Syntec Drive
Pn-D61	Measured Temperature via Feedback Syntec Encoder Internal KTY84
Pn-D62	Measured Temperature via Feedback Syntec Encoder External(1) KTY84
Pn-D63	Measured Temperature via Feedback Syntec Encoder External(2) KTY84
Pn-D64	Measured Temperature via Feedback Syntec Encoder External(3) KTY84
Pn-D65	Measured Temperature via 2nd Feedback Syntec Encoder Internal KTY84
Pn-D66	Measured Temperature via 2nd Feedback Syntec Encoder External(1) KTY84

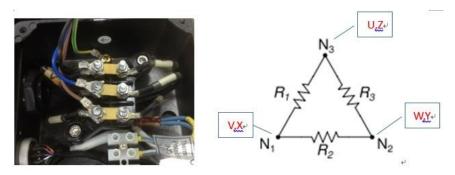
6.9. Y connection and Delta motor parameters conversion and use precautions 6.9.1. Y-Delta Wiring Conversion

Checking if drive specifications can be converted successfully:

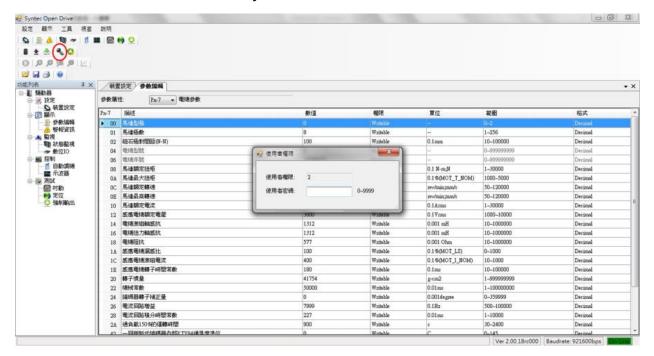

Before implementing Y-Delta Wiring Conversion, the user must ensure that Connector Δ 's voltage is 1/3 of the square root of Connector Y's voltage (about 0.577 times) and that Connector Δ 's current is 3 times the square root of Connector Y's current (about 1.732 times).

After the conversion, the drive's rated voltage must exceed the motor's rated voltage, and the drive's rated current must be at least 1.5 times the motor's rated current. If the drive cannot meet these conditions, it is not recommended to implement Y-Delta Wiring Conversion. If any of these values are unknown, the user may obtain them through corresponding parameters in the OpenGuide software.

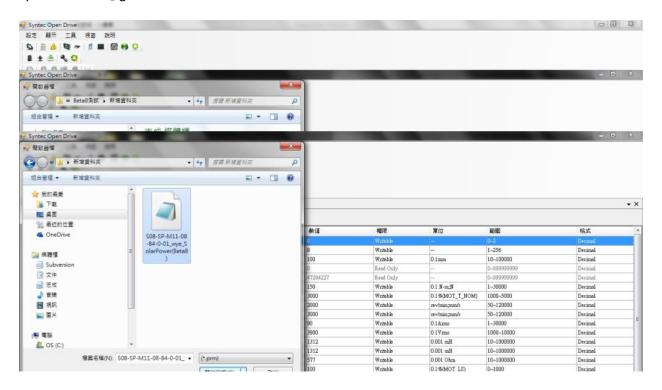
Parameter No.	Title
Pn-710	Rated Current
Pn-712	Rated Voltage for Induction Motor
Pn-640	Main Supply Voltage
Pn-651	Drive Rated Current


After ensuring that the drive specifications satisfies the above conditions, power-off the system and open the motor casing.

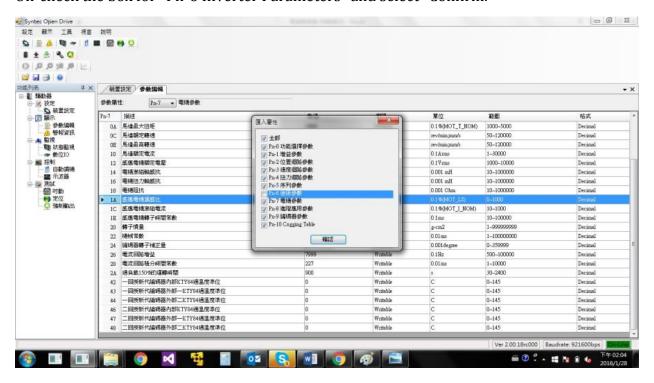
Notice that three brass strips are connecting the Z, X, Y terminals; this Connector Y circuit is represented by the diagram on the right.


Reconnect the brass strips to the U, V, W terminals; the resulting **Connector Delta circuit** is represented by the diagram on the right.

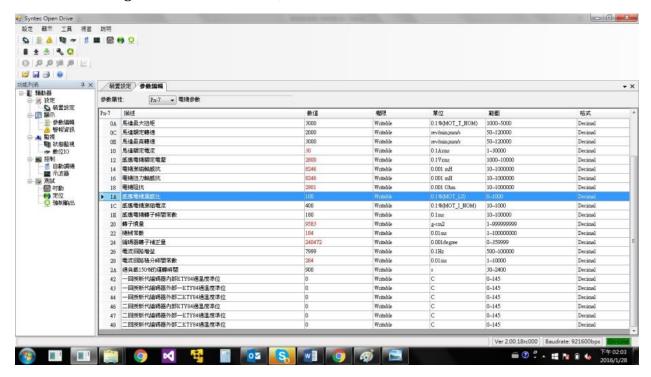
XCaution: Do NOT disorder the U, V, W sequence After reconnecting and securing the brass strips, the user may then replace the motor casing, power-on the system, and connect to the tuning software.


6.9.2. Y-Delta Parameter Conversion

After opening the tuning software, enter the password in the user authority box to unlock user authority.

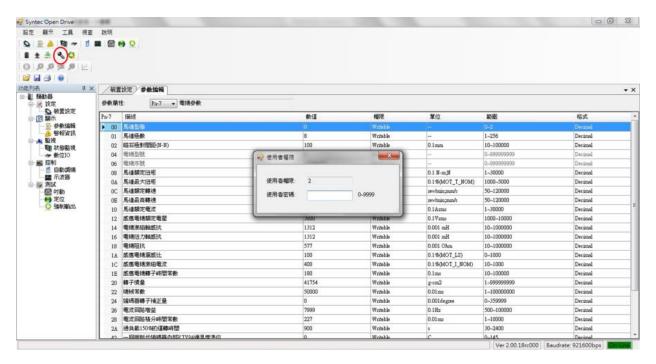


Click on "Open File" and select the Syntec package parameter file for Connector Delta. Parameter files with "wye" in the file name are for Connector Y, and those with "delta" are for Connector Delta.



Un-check the box for "Pn-6 Inverter Parameters" and select "Confirm."

After successfully importing the parameters, the parameters "Pn-710 Rated Current," "Pn-712 Rated Voltage for Induction Motor," and Pn-714~Pn-718 will turn red.



Ensure that "Pn-90C Enable Encoder Parameter Protection" is set as 0 (writable), then click "Write Parameters" in the top-left corner and select "Save Parameters" right beside it; this will save the newly imported package parameters and complete the parameter conversion process.

Manual Parameter Computation

After opening the tuning software, enter the password into the user authority box to unlock user authority.

Use the original parameters to compute their converted values, as follows:

X From Connector Y to Connector Delta

Parameter No.	Title	Connector Y Value	Connector Delta Value Formula
Pn-710	Rated Current	R1	R1 *1.732
Pn-712	Rated Voltage for Induction Motor	R2	R2 /1.732
Pn-714	d-axis Inductance	R3	R3 /3
Pn-716	q-axis Inductance	R4	R4 /3
Pn-718	Motor Impedance	R5	R5 /3

X From Connector Delta to Connector Y

Parameter No.	Title	Connector Delta Value	Connector Y Value Formula
Pn-710	Rated Current	R1	R1 /1.732
Pn-712	Rated Voltage for Induction Motor	R2	R2 *1.732
Pn-714	d-axis Inductance	R3	R3 *3
Pn-716	q-axis Inductance	R4	R4 *3
Pn-718	Motor Impedance	R5	R5 *3

Manually input the computed values into their corresponding parameters. Ensure that "Pn-90C Enable Encoder Parameter Protection" is set as 0 (enabled) before selecting "Write Parameters" and "Save Parameters." Motor parameters now reflect the converted values.

6.9.3. Motor Testing after Conversion

After completing the parameter conversions, the user should then implement encoder testing. Select the Pn-F subpage from the Parameter Edit page, and set Pn-F10 as 3 (enabled). Select "Read Parameters" and wait for Pn-F10 to become 0 before implementing encoder testing. If the system triggers any alarms during this process, troubleshoot according to the "Alarm Diagnostics and Troubleshooting" section; then restart encoder testing from the first stage. When an alarm is triggered, erroneous parameters will not be written into the system.